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The hydrodynamic, or the de Broglie-Bohm, formulation provides an alternative to the conventional time-
dependent Schro¨dinger equation based on quantum trajectories. The trajectory dynamics scales favorably
with the system size, but it is, generally, unstable due to singularities in the exact quantum potential. The
approximate quantum potential based on the fitting of the nonclassical component of the momentum operator
in terms of a small basis is numerically stable but can lead to inaccurate large net forces in bound systems.
We propose to compensate errors in the approximate quantum potential by applying a semiempirical friction-
like force. This significantly improves the description of zero-point energy in bound systems. Examples are
given for one-dimensional models relevant to nuclear dynamics.

I. Introduction

The hydrodynamic, or the de Broglie-Bohm,1 formulation
of the time-dependent Schro¨dinger equation (SE) is a conceptu-
ally appealing alternative to the conventional SE. It is based on
the wavefunction written in terms of real amplitudeA(x, t) and
phaseS(x, t) (eq 1).

After substitution of eq 1 into the SE for a particle of massm
and identification of the gradient of the phase with the trajectory
momentum given by eq 2,

ψ(x, t) can be represented in terms of trajectories characterized
by positions x(t) and momentap(t) evolving according to
Newton’s equation of motion under the combined influence of
the external potentialV and the quantum potentialU defined
below (eq 3),

The action function defining the wavefunction phase evolves
as eq 4.

Evolution of the probability densityF(x, t) ) A2(x, t) along these
trajectories satisfies the continuity equation (eq 5),

but we prefer to work with the probability (eq 6),

where dxt is the volume element associated with each trajectory.
For time-independentV, this probability does not change in time
(eq 7).2

This trajectory description can be viewed as the most local repre-
sentation of quantum mechanics, because the probability associ-
ated with a particular trajectory is independent of other trajec-
tories. An important technical consequence of this locality is
that a wavefunction always remains localized on the initially
chosen set of trajectories. Equations 3 and 4 are almost the same
as in classical mechanics. The difference between the dynamics
of classical and quantum trajectories is due to the force
associated with a single nonlocal quantity: the quantum potential
(eq 8).

We will refer to the expectation value of the quantum potential
〈U〉 as the quantum energy, because the remaining contributions
to the total energy of a system have classical counterparts.

The appeal of the Bohmian formulation is two-fold: (i) it
provides an intuitive visualization tool for quantum dynamics
and is used to interpret conventionally obtained wavefunctions,3

and (ii) positions of quantum trajectories provide an ideally
compact time-dependent grid representation of the wavefunction.
This feature is highly desirable in multidimensional calculations
as the cost of standard methods of solving SE based on fixed
grids or direct-product basis sets scales exponentially with the
dimensionality of a system. Because of the singularities in the
quantum potential at the wavefunction nodes, dynamics of
quantum (Bohmian) trajectories describing time-evolution of all
but Gaussian wavefunctions is, generally, numerically unstable.
The problem is especially severe for bound anharmonic
potentials, where even slight anharmonicity results in a rapid
deterioration of numerical accuracy. Several strategies dealing
with this problem have been proposed over the past few years,
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including mixed Lagrangian-Eulerian grids,4 covering func-
tions,5 and artificial viscosity.6

The quantum trajectory formulation also provides a natural
connection with classical mechanics. The quantum potential for
nonsingular wavefunctions vanishes in the semiclassical limit
of p f 0 or m f ∞ and can serve as a starting point for semi-
classical dynamics methods, including the approximate quantum
potential (AQP) method pursued by this group. Other approxi-
mate methods include the derivative propagation method of
Trahan and Wyatt,7 the local quadratic expansions of Zhao and
Makri,8 and the classical/quantum correspondence of Poirier.9

The quantum potential (eq 8) depends only on wavefunction
density, and therefore, simple AQP can be derived based on
the density fit to a particular functional form, such as a Gaussian
or a linear combination of Gaussians.10 A much more elegant
approach is based on the fit to the nonclassical momentum,11

from which the approximate quantum force is derived. This
approach has been further developed to include energy conser-
vation,12 optimization on subspaces,13 arbitrary coordinate
systems,14 and nonadiabatic dynamics.15 It has been successfully
applied in reactive scattering to H+ H2 and to the nonadiabatic
O + H2 systems.16 In these applications, an accurate description
of motion in vibrational coordinates for several oscillation
periods was achieved by defining AQP on subspaces or by
including the exponential function (exact for the eigenstates of
the Morse potential17) into the AQP. In condensed systems it is
desirable, however, to describe vibrational motion, in particular,
its zero-point energy, on a much longer, essentially arbitrarily
long, time-scale in an efficient manner. One of the simplest
globally defined quadratic AQPs is exact for Gaussian wave-
functions, but although numerically stable, it quickly loses
accuracy in anharmonic systems. Below we introduce a semi-
empirical “friction”, alleviating this behavior in anharmonic
systems. Examples are given for one-dimensional systems ana-
lyzed in ref 13. The formalism is described in atomic units (au)
in one dimension. Multidimensional generalization is given
where necessary.

II. Theory

The simplest nontrivial AQP is based on the linear ap-
proximation (eq 10)

to the nonclassical momentumr of eq 9 and gives the linearized
quantum force (LQF). As described in ref 12, the expansion
coefficients a and b are found from the minimization of a
functional (eq 11),

which is shown to be equivalent to maximization of the AQP
(eq 12).

With the AQP of eq 12, the total energy of the system is con-
served regardless of the quality of the approximation. This
approach exactly describes an arbitrary Gaussian wavefunction
evolving in a locally quadratic potential and reproduces energy

spread in a wavepacket. However, in bound anharmonic systems,
trajectory motion soon becomes chaotic; trajectories “decohere”
and lose their quantum or, for the ground state, zero-point energy
(ZPE). In the semibound potentials, such as the Morse potential,
inaccuracies in the quantum force on the fringes of the wave-
packet lead to some trajectories moving to the dissociation limit,
which “drains” energy from the bound trajectories and reduces
ZPE. For an accurate description of an eigenstate, quantum force
should cancel classical force exactly; as for the Morse potential,
it was achieved by using an exponential function inr̃.14

Within a simpler and more general linear approximation to
r, we propose to use a semiempirical friction-like force
compensating for the inaccuracies of the AQP. We impose
several requirements on such a force: (i) it should be Galilei
invariant and it should vanish (ii) when the propagation is exact
and (iii) in the classical limit of zero quantum potential; (iv) in
addition, if, in case of separable motion, there are exact and
approximate degrees of freedom, this force should not influence
the exact degrees of freedom.

We start by considering a Gaussian wavepacket with the
corresponding linearr and p. At time t the AQP error in the
anharmonic potential results in the error in trajectory momenta
δp(t) and in position (eq 13).

The error in quantum force associated withδx(t) is estimated
from the expansion of the quantum potential inδx(t) up to
second-order (eq 14),

resulting in a deviation of the force (δF) in the Newton’s
equation of motion (eq 15).

Therefore, neglecting the unknown spatial derivative ofδp, we
introduce a friction-like force (Ffr ≈ -δF) to compensate for
this error. In the multidimensional case this force is given by
eq 16;

where∇‚∇TU is the Hessian matrix of the quantum potential.
In eq 16 we have introduced the friction coefficientη, which
should be set to 1 if the expansion in eq 14 was exact. In
practice, we treat it as an adjustable parameter. Using velocity
(V ) p/m) and the AQP of eqs 10 and 12, the friction force
becomes eq 17.

The deviation in momenta for each trajectoryδp(t) ) p(t) -
p̃(x, t) is defined with respect to a global linear in position fit
(p̃(x, t)) to the momentap(t). The parameters of the fit (different
from those ofr̃) are obtained from the standard least-square fit
procedure18 minimizing 〈(p - p̃)2〉. The derivative ofδp(t),
neglected within eq 16, is zero in this approximation. If the
globally defined linearr̃ and p̃ are inaccurate, then eq 17 can
be generalized to linear approximations on subspaces.13 With
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the friction force of eq 17 the equations of motion of the
quantum trajectories become eq 18.

This additional force (Ffr) is similar to the conventional friction
force due to the interaction with the environment19 that is
generally written as eq 19.

Both arise from the incomplete knowledge of the system, and
both depend on the time-dependent friction coefficient and on
the integral of the velocity. However, the “quantum” friction
of eq 17 depends on the deviation of the velocity of the quantum
trajectories from the exact velocity. In the case of the linear
quantum force, the exact dynamics results in a linear dependence
of velocity on position.

It is easy to see that the requirements set forth above are
satisfied for Ffr of eq 17. The time-dependent prefactor
analogous to the friction coefficient goes to zero in the classical
regime if the quantum force is zero. The quantum friction also
vanishes if dynamics is exact (i.e.,δp ) 0). In the multidimen-
sional case for a separable Hamiltonian and a factorizable initial
wavefunction, the friction force is equal to zero in the exact
degree of freedom labeledj, because the momentum deviation
δpj(t) ) 0 and∇ij

2U ) 0 for i * j in the course of dynamics,
and the motion along the approximate degree of freedom is
unaffected by the exact one. An important difference with the
conventional friction is that quantum friction does not neces-
sarily decrease the energy of the system. Energy nonconservation
can be used to monitor the effect of the quantum friction and
to adjust the friction coefficientη.

To test the validity of the arguments leading to eq 17, let us
consider the dynamics of a coherent Gaussian wavepacket (eq
20),

which is the solution of SE withm) 1 andV ) x2/2. Parameters
xt andpt, xt ) x0 cost + p0 sin t, andpt ) p0 cost - q0 sin t,
describe the motion of the center of this wavepacket. The initial
momenta of all quantum trajectories are equal top0. We displace
the initial momentum of one of the trajectories (p(0) ) p0 +
dp) and let it evolve under the combined influence of the
classical, exact quantum, and friction forces. (The weight of a
single trajectory can be made vanishingly small, so that its
displacement will not affect the linearity ofr and p of the
remaining trajectories.) Figure 1 shows the phase portraits of a
trajectory with initial conditionsq(0) ) 1.5 without the
displacement (p(0) ) p0) and with the displacement (dp )
-0.1). The parameters ofψ(x, 0) arex0 ) 1 andp0 ) 1. As
seen from Figure 1a, without the friction force the displaced
trajectory begins to spiral and drift away as opposed to the
circular motion of the exact trajectory. Introduction of the
friction force counteracts this drift and makes the trajectory
oscillate around a circular path of a smaller radius because it
has a smaller initial momentum, shown in Figure 1b, compared
to the undisplaced trajectory. Note thatη ) 1 corresponds to
the oscillations of the smallest amplitude, reflecting the fact that
expansion in eq 14 is exact for the quadratic potential.

III. Results and Discussion

In this section we analyze the effect of the friction force on
dynamics with the globally defined quadratic AQP producing
linear quantum force. Special attention is given to the long-
time description of bound motion and time-dependence of
quantum energy or ZPE. Model systems are the same as in ref
13 and are chosen for their relevance to problems of nuclear
dynamics. The quantum-mechanical (QM) results used for
comparison were obtained using the split-operator method.20 The
AQP results are obtained by propagating trajectories as specified
by eq 18. The action functionS(x, t) of eq 4 and the time integral
of the momentum deviationδp(t) needed to evaluate the friction
force (eq 17) are accumulated in time for each trajectory. Linear
fits to the classical and nonclassical components of the
momentum operator (r̃ and p̃, computed at each time step as
discussed in Section II), give the approximate quantum potential
and quantum force and the friction force. In the AQP calcula-
tions we typically used 399 trajectories propagated with time-
increments that are 25 times smaller than the time-step of QM
propagation (and 5 times smaller than propagation with the
classical force) because the quantum and friction forces are time-
dependent. The numerical effort of computing the friction force
is negligible as compared to the AQP computation, because
minimization of bothr and p require inversion of the same
matrix. The AQP calculations took twice as long as the QM
propagation and were five times longer than the purely classical
propagation, which is explained by low dimensionality of the
problem and simple analytical form of the potentials considered.
For realistic multidimensional problems, the cost of AQP calcu-
lation becomes a small fraction of the total computation cost.

We have verified that the friction force of eq 17 does not
prevent bifurcation of the wavepacket under the influence of
the external force by analyzing dynamics of the Eckart barrier
described in ref 13. For this scattering problem the prefactor
a2(t) in eq 17 vanishes faster than the accumulation ofδp, and
the effect of the friction force is negligible.

A. Perturbed Harmonic Oscillator. Our first application is
dynamics of a Gaussian wavepacket in the anharmonic potential
studied in ref 21. The potential is a harmonic oscillator perturbed

dx(t)
dt

)
p(t)
m

dp(t)
dt

) - d
dx

(V + U) + Ffr (18)

F ) - ∫0

t
η(t - τ)V(τ) dτ (19)

ψ(x, t) ) x2
π

exp(-(x - xt)
2 + ıpt(x - xt) +

ı
2

(xtpt - x0p0 - t)) (20)

Figure 1. Displaced quantum trajectories for a coherent Gaussian
wavepacket: (a) momenta vs positions of trajectories without (solid
line) and with the initial displacement (dash); (b) momenta vs positions
of the initially displaced trajectories with the friction force coefficient
η ) {1, 0.5, 2}.
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by a quartic potential:V ) x2/2 + 0.01x4, m ) 1. The initial
wavefunction is a displaced Gaussian (eq 21),

with the valuesR ) 0.5,x0 ) 1.0,p0 ) 0.0. The anharmonicity
is small, and the motion of the center of the wavepacket remains
essentially harmonic. Nevertheless, we see that, with the LQF
method, trajectories on the fringes of the wavepacket quickly
“decohere” analogously to the drift of the displaced trajectory
shown on Figure 1a. This leads to errors in the phase sensitive
quantities, such as wavepacket correlation function (C(t), shown
on Figure 2a) and to the loss of quantum energy, shown on
Figure 2b, after 6 oscillation periods. For a real initial wave-
packet the autocorrelation function is computed by eq 22.

The total energy shown in Figure 2c is conserved within the
LQF formalism. The friction force reduces this decoherence and
improves agreement ofC(t) and, most importantly, of the
quantum energy. Total energy is not conserved when the friction
is introduced, but it serves as a guide for choosing a value of
η. For quadratic potentials the value ofη is one, but we find
that it should be adjusted in the presence of anharmonicity. For
the given system,η ) 1 leads to an unstable regime as total
energy of the system increases. However, larger values ofη
improve the performance of the LQF method. The valueη )
2.25 giving stable dynamics was used in this calculation. We
find that further increase of the friction coefficient (up toη )
10-20) suppresses chaotic motion of the trajectories for up to
100 oscillation periods. This regime, which gives accurate results
for the perturbed harmonic oscillator, is very different from the
derived value ofη ) 1 and could qualitatively change the
dynamics in general systems by preventing bifurcations. There-
fore, we choose the smallestη, yielding total energy oscillating
within a few percent around its initial value.

B. Morse Oscillator. Next, we consider the ground state of
the Morse oscillator. The purpose is to assess how the AQP
with friction describes the ZPE of a chemical bond. The potential
V describes a non-rotating H2 molecule,V ) D(1 - exp(-z(x

- xe))2. With m) 1.15, the parameters of the potential in scaled
atomic units areD ) 160.0,xe ) 1.4008, andz ) 1.0435. We
apply the quantum trajectory formalism to the propagation of
the ground stateψ(x, 0) and examine the density overlap (C(t)
) 〈F(0)|F(t)〉), quantum energy, and total energy. Figure 3 shows
the three quantities on panels a-c, respectively. The main
deficiency of the global linearization of the quantum force is
that it does not compensate for the external force exactly (as it
should for the ground state). Consequently, trajectories on the
fringes of the wavepacket experience large inaccurate forces
that push them into the dissociation region of the potential,
reducing the energy of the remaining bound trajectories. This
effect can be seen in the behavior of the quantum energy on
panel b and in the time-dependence ofC(t). Introduction of
friction force withη ) 1 decreases the number of dissociating
trajectories but does not eliminate this behavior completely.
From the time-dependence of the total energy on Figure 3c we
see that this friction drains a considerable amount of energy
from the system. A larger value ofη (η ) 2.5) produces stable
dynamics with a small loss of quantum and total energies.

Consistent with the derivation, the value of the adjustable
parameterη depends upon the anharmonicity of the system.
Results given in Table 1 support this claim. We examined which
smallest η gives stable dynamics of the Morse oscillator
eigenstate for several isotopes (including fictitious heavy nuclei).
Dynamics of heavier isotopes is stabilized by smaller values of
η. The resulting ZPE is less oscillatory and is in better agreement
with the exact result. We also looked at the ZPE of a Gaussian
wavepacket mimicking the ground state and displaced by(0.1
from the bottom of the well and observed the same trend. The
stabilizing value ofη increased up to 3.0/3.5 in these cases due
to appreciable anharmonicity of the hydrogen molecule bond.

C. Metastable Potential Well. Finally, we consider a
metastable well studied in ref 22. This system exhibits a
combined bound/unbound motion. Our goal here is to test
wavepacket bifurcation in the presence of a friction force. The
external potential in scaled units withm ) 1 is V ) Z(x2 - x3),
where Z ) 200. V forms a well, supporting two metastable

Figure 2. Dynamics in the potential with quartic anharmonicity. (a)
The amplitude of the auto-correlation function,C(t) ) 〈ψ(0)|ψ(t)〉, (b)
quantum energy,〈U〉, and (c) total energy of the system as a function
of time are obtained with the LQF method forη ) 0 (dash line),η )
2.25 (circles). The quantum result is shown with a solid line on all
panels.

ψ(x, 0) ) (2R/π)1/4 exp(-R(x - x0)
2 + ıp0(x - x0)) (21)

C(t) ) 〈ψ(0)|ψ(t)〉 ) ∑
i

wi exp(2ıS(xi, t/2)) (22)

Figure 3. Dynamics in the Morse potential. (a) The amplitude of the
density correlation function,C(t) ) 〈F(0)|F(t)〉, (b) quantum energy,
〈U〉, and (c) total energy of the system as a function of time are obtained
with the LQF method forη ) 0 (dot-dash line),η ) 1 (dash line) and
η ) 2.5 (thin solid line). The quantum result is shown with a thick
solid line on all panels. On panel c) the result forη ) 0 is
indistinguishable from the exact energy.
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states. The energy of the barrier top, located atx† ) 0.667, is
V† ) 29.619. Potential of the unbound region is set to a
constant: V ) -V† for x > 1.1184. We examine the time-
evolution of two wavepackets, defined by eq 21 and initially
centered on the repulsive wall, with total energiesEtot ) 2V†

andEtot ) V†. The parameters ofψ(x, 0) areR ) 10.0,p0 )
0.0 with q0 ) -0.4125 andq0 ) -0.2821 for the two values
of Etot.

Figure 4 shows the amount of the wavefunction density in
the metastable well, which is the survival probability (P(t) )
∑xi(t)<x†wi) for the two values of initial energy. We apply a
globally linearized quantum force. Therefore, once the wave-
packet bifurcates into bound and unbound components, the
quantum force and the friction vanish. Such quantum force
cannot reproduce the ZPE of the bound part of the wavepacket,
and the exponential decay ofP(t) exhibited t > 0.5. As seen
from the figure, friction force does not prevent the wavepacket
from bifurcation, andη > 1 improves agreement with quantum
results at short times. Accuracy ofP(t) correlates with the level
of energy conservation.

IV. Conclusions

Ideal quantum trajectory dynamics leads to a smooth flow
of noncrossing trajectories; deviations in position of trajectories

produce local features in the quantum potential that restore
smooth stable dynamics. To describe this response to deviation,
quantum potential should be sensitive to each trajectory. Our
AQP is defined globally and therefore cannot compensate for
local deviations. As a compensation for this deficiency we have
introduced a semiempirical friction-like force improving the
description of ZPE in bound systems in the framework of
quantum trajectory dynamics with the approximate quantum
potential. This expands applicability of this approach to long-
time dynamics of systems with bound reaction degrees of
freedom, although more research is needed to make it truly
general.

The functional form of the friction force is derived as the
leading correction term and therefore is expected to work only
for systems close to harmonic. We used this force in dynamics
of wavefunctions that significantly deviate from being Gaussian,
yet the general functional form of the friction force worked with
the adjusted coefficientη. In addition, it might be possible to
adjust values ofη and/or the linear approximation ofp to have
a rigorous energy-conserving method. Current research on these
two issues will bring us closer to our ultimate goal of developing
a computationally cheap method that accounts for quantum
corrections for arbitrary long propagation time in large semiclas-
sical systems.
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TABLE 1: Dependence of the Friction Coefficient (η)
Resulting in Stable Dynamics on the Mass (m) for the Morse
Oscillatora

m/mH η E0 ∆E σE U0 ∆U σU

1 2.5 8.59 0.41 0.093 4.24 0.35 0.090
2 2.3 6.10 0.22 0.032 3.02 0.19 0.038
3 2.2 4.99 0.15 0.022 2.47 0.13 0.029
5 2.1 3.87 0.09 0.014 1.92 0.08 0.020

10 2.0 2.74 0.05 0.007 1.37 0.05 0.007
20 1.8 1.94 0.02 0.004 0.968 0.023 0.006

a E0 is the analytic ZPE, andU0 is the quantum energy of the
eigenstates. The terms∆E and∆U are the differences between the exact
and AQP values,∆E ) E0 - EAQP, and∆U ) U0 - UAQP averaged
over 13 oscillation periods. The termsσE and σU are the standard
deviations ofEAQP andUAQP, respectively.

Figure 4. Survival probability in the metastable potential well for (a)
E ) V† and for (b)E ) 2V†. Results for values ofη ) {0, 1, 2, 3} are
compared to the quantum mechanical probability. The legend applies
to both panels.

Stabilization of Quantum Energy Flows J. Phys. Chem. A, Vol. 111, No. 41, 200710255


